Artificial Neural Networks Using Complex Numbers and Phase Encoded Weights
نویسندگان
چکیده
The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. Use of the CVN in character recognition and image segmentation is demonstrated. Implementation details are discussed and shown to be very attractive for optical implementation since optical computations are naturally complex.
منابع مشابه
Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملArtificial Neural Networks Using Complex Numbers and Phase Encoded Weights—Electronic and Optical Implementations
The model of a simple perceptron using phaseencoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. Optical and analog circuit implementations are discussed and the CVN is s...
متن کاملCMOS Implementation of Phase-Encoded Complex-Valued Artificial Neural Networks
The model of a simple perceptron using phase-encoded inputs and complex-valued weights is presented. Multilayer two-input and three-input complex-valued neurons (CVNs) are implemented as mixed-signal CMOS integrated circuits. High frequency AC signals are used to carry information. Analog differential amplifier and comparator circuits implement the aggregation function and activation function. ...
متن کامل